PHYSICAL REVIEW E VOLUME 61, NUMBER 3 MARCH 2000

Collisional effects on diffusion scaling laws in electrostatic turbulence
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The effect of particle collisions on effective transport in two-dimensional electrostatic plasma turbulence is
studied analytically in the framework of a test particle approach. We show that an amplification of the diffusion
coefficient can be produced by the combined effect of collisions and trajectory trapping in the structure of the
stochastic potential.
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[. INTRODUCTION physics and fluid turbulence. A detailed review of this work
was presented in Refgl0] and[8]. See also the very recent
Particle and energy transport in turbulent plasmas hageview paper by Majda and Kramgtl]. The main aim of
been intensively studied in the context of plasma fusion rethese studies was to find under what conditions the process is
search. In addition to self-consistent analyses which deaduperdiffusive or subdiffusive, and to determine the
with plasma instabilities and their nonlinear developmentasymptotic exponeny of the time dependence of the mean
the test particle approach leads to interesting results. Detailegfjuare displacement of the partick®’(t) ~t%?). From the
studies in this framework were devoted to the influence ofmathematical point of view, these studies use renormaliza-
particle collisions on the effective transport in magnetic tur-tion group techniques which are adequate for determining
bulence[1-4]. They proved the existence of several trans-but not the details of the evolution of the stochastic motion
port regimes which are rather different from the collisionlesswhich are contained in the running diffusion coefficient or in
one. However, a similar study concerning the diffusion ofthe Lagrangian correlation of the velocity. Although our
collisional particles in electrostatic turbulence has not beemodel is different from that of Ref10] in the sense that we
performed until now, to our knowledge. This problem is are interested in time dependent stochastic fields as they ap-
treated here. More precisely, we determine the time deperpear in plasma turbulence, we show that our results are in
dent diffusion coefficient of collisional particles moving in a qualitative agreement with those of Rgt0]. This strength-
two-dimensional stochastic potential as generated in a magns the idea that the decorrelation trajectory method is a
netically confinedtokamak plasma. powerful tool for analyses of these kinds of problems. It has
Previous papergs—7] demonstrated that a process of tra- the advantage of yielding more detailed informatitite La-
jectory trapping around the extrema of the potential appeargrangian correlation of the stochastic velogignd also a
in a low frequency turbulence. This process determines @ore intuitive physical picture.
decrease of the diffusion coefficient and the change of its The paper is organized as follows. The model and the
scaling in the parameters of the stochastic fie&resented system of equations are formulated in Sec. Il. A short de-
by the Kubo numbeK which will be defined in Sec. JI  scription of the process of trajectory trapping around the ex-
More precisely, this trapping process changes the depefirema of the stochastic potential and of the decorrelation tra-
dence onK of the diffusion coefficient from a Bohm to a jectory method is presented in Sec. lll. The effect of particle
percolation scaling laW8]. We show here that a weak col- collisions is treated in Sec. IV, where the running diffusion
lisional diffusivity of the particles can produce a decisive coefficient is determined. Section V contains the analyses of
influence on the effective diffusion. Important nonlinear ef-the results, and Sec. VI a detailed study of the possible dif-
fects are shown to appear in close connection with trajectorfusion regimes. The conclusions are summarized in Sec. VII.
trapping. A detailed study of the possible diffusion regimes
is presented. The dependence of the diffusion coefficient on
the Kubo number can be significantly changed due to colli-
sions. The test particle models determine the transport induced
Our model is based on Langevin-type equations that deby a stochastic field whose statistical characteristics are sup-
scribe particle guiding center trajectories. We use dee  posed to be known from experimental measurements. This
correlation trajectory methodl9], a recently developed sta- allows one to ignore the collective effects which produce the
tistical approach describing the complicated process of trastochastic field, and to concentrate on determining the statis-
jectory trapping. tics of the individual particle trajectories. In the case of
The problem of the evolution of collisional particles in Gaussian stochastic fields, a complete experimental descrip-
stochastic velocity fields was studied for the case of frozerion consists of measuring the average velocity and the two-
turbulence(quenched disorder or “random random walks” point Eulerian correlation of the potentiékhich is equiva-
in a large number of papers related especially to solid statlent to the wave number spectrumTwo equivalent

Il. MODEL

1063-651X/2000/6(B)/302310)/$15.00 PRE 61 3023 ©2000 The American Physical Society



3024 M. VLAD, F. SPINEANU, J. H. MISGUICH, AND R. BALESCU PRE 61

mathematical formulations are possible for these models: the The collisional velocityn is modeled by a zero average
Langevin equation for the stochastic trajectories or thewhite Gaussian noise,
Fokker-Planck equation for the evolution of the probability
density of the displacements. The first variant is used in this 7i(ty) ni(ty+t)= 5ij)(V5(V|t|), (6)
paper.

We consider a slab geometry with a strong confiningwhere v is interpreted as the collision frequency of the
magnetic fieldB, along thez axis and a fluctuating potential plasma, anck=V§,»/2Q? as the(classical cross-field colli-
&(x,t) in the planex=(x,y). The particle motion in the sional diffusion coefficientV{y, is the thermal velocity and

guiding center approximation reads. Q=eBy/m is the gyration frequengy The bar represents
ax(t) the average over the realizations of the collisional velogity
X(t) _ The collisions introduce a second dimensionless parameter,
dt =vix(t).D+ ), x(0)=0, @ the Pelet number8]
where T
p= é _ coll ’ (7)
x0) Vp(x,t) ¥Xe, @ X T
V Xl = —l . . . . . .
Bo where the transit timey,=\/V is the time during which a

. . . , particle with the velocityV goes through the correlation
and z(t) is the collisional stochastic velocity. The electro- length, and the collisional time.,, =A%/ is the time dur-

static potentialh(x,t) is a stochastic field considered to be j,o"\yhich the collisional mean square displacement attains
Gaussian, statlonary, apd homogeneous_. Since the veIoch_ The Pelet number is a measure of the particle’s capacity
components are derivatives of the potential, they are Gausg eynioring the space structure of the velocity field in the

ian, stationary, and homogeneous as well. We assume thglesence of collisions which scatter the trajectories. Since
they have zero averages. The two-point Eulerian correlauo%q_ (4) can be written a& = 7./7,, , one can note that Kubo

(EC) function of the potential is modeled by and Pelet numbers are similar in the sense that both de-

E(x,t)=(b(xq t X; Xt +t scribe physical effectétime variation of the potential and

(}D=(S(x1,t) b 1) collisions respectivelywhich perturb the motion along the
5 [t] potential contour lines. Large values Bf(i.e., a small col-
=pE(x)exp — _C : ©) lisional diffusion y) and large values oK correspond to

nonlinear regimes strongly influenced by the structure of the
Angular brackets denote the statistical average over the reastochastic potential.

izations of the stochastic potential fiej@ s the amplitude of The mean square displacemé@mitSD) of the particles and
the potential fluctuationgdivided by By), and . is their ~ the running diffusion coefficient are determined from the
correlation time £(x) is a dimensionless function which de- two-point correlation function of the Lagrangian velocity.
cays from&(0)=1 (where it has a maximujrto zero when The latter is defined as

|x| —oe; its form is left unspecified at this stage. A dimen-
sionless parametethe Kubo numbecan be defined as Lij(tt)=(vi(X(ty),t)vj(X(ty+1),t1+1)), (8)

K=V7. /N, V=8I, (4)  and will be called for simplicity_agrangian velocity corre-
lation (LVC). In the stationary and homogeneous case one

whereV measures the amplitude of the fluctuating velocity can assume that the LVC depends only on the time intéyval
and\ is a characteristic wavelength of the turbulence, whichyng the MSD can be written as

will be called the correlation length. The Kubo number is

thus the ratio of the average distance covered by the particles —— t

during the correlation time of the stochastic velocity field to (Xi (U)ZZJ d7L;i(7)(t—17). 9)

its correlation length. It represents a measure of the particle’s 0

capacity of exploring the space structure of the velocity fieIdThe

before the latter changes. In mathematical terms, this Kubo

number determines the importance of the Lagrangian nonlin-

earity introduced in Eq(1) by the space dependence of the ‘

velocity field. Di(t):f drL(7). (10)
The two-point EC of the velocity components and of the 0

potential with the velocity E;j(x,t)=(v;(0,0)v;(x,t)) and o o

E,i=(#(0,0)v;(x.t)), are obtained fromE(x,t) by appro- Thus the diffusion problem reduces to the determination of

running diffusion coefficient defined a®;(t)
3(d/dt)(x{(1)) is

priate derivatives: the LVC, knowing the statistical description of the stochastic
potential. We use the decorrelation trajectory method which
52 52 52 was developed for the collisionless problem in Ré&fl. A
Exw=——E, Eyy=——E, Exy=-—E, short review of these results and of the method is presented
ay? ax? Ixady i is i i
y in Sec. lll. This is necessary for understanding the effect

introduced by particle collisions. The latter is determined in
Sec. IV, where the running diffusion coefficient is deter-

Bao="EBu=3 B Bp="By=— 5 E ®) mined for all values of the Kubo and &et numbers.
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ll. PARTICLE TRAPPING AND THE DECORRELATION by Eq. (11). P#(4°% and PY(\%), respectively, are the

TRAJECTORY METHOD Gaussian probability densities of the potential and of the

The particular case of collisionless particleg=0in Eq.  velocity. The upperscripty shows that the stochastic func-
(1), i.e., P—x] was studied earlier both numerically by tion in this probability is the potentiap. We note that Eq.
means of direct simulation of trajectories and analytically.(12) is an exact equation. The Eulerian correlation in the
For small Kubo numbergjuasilinear regime the results are  subensemble  can  be written  asEf (x,t; ¢%v0)
well established: the diffusion coefficient isDq, =v?<vj(x,t))|,',,o,\,o, where(v;(x,t))| 40,0 is the Eulerian av-
=(\%/7)K?. At largeK the time variation of the stochastic erage velocity in the subensembel). The latter is deter-
potential is slow and the trajectories can approximately folimined using the Gaussian conditional probability density for
low the contour lines ofp(x,t). The space structure of the having the velocity in the point ,t) when condition(11)
stochastic potential has an important influence on particlés imposed. Straightforward calculations lead to
trajectories. This produces a trapping effect: the trajectories

are confined for long periods in small regions. A typical Vj(X,t;¢0,VO)E<UJ(X,I)>|¢0YV0

trajectory shows an alternation of large displacements and

trapping events. The latter appear when the particles are _ 0 Eij(x,t) N o Eai(X,t) 13
i

close to the maxima or minima of the potential and consists
of trajectory winding (for many turn$ on almost closed

small size paths. The large displacements are produced whefyation(13) exhibits the space-time structure of the corre-
the trajectories are at small absolute values of the potentigjated zone. The average velocity in the subenseriigis
Numerical calculations show that the Lagrangian stochasti¢o i, v=0 andt=0 [becauseS(x) has a maximum thete
velocity v(x(t),t) of the particles is Gaussian and stationaryanq it decays progressively to zero as the time and/or the
at any time during their motion. The displacemexft) are gistance grows. Both time and distance determine the deco-
Gaussian only for a very small time interval. At later times, yrg|ation of the velocity.
the process of trajectory trapping determines the modifica- \ye determine the dynamics induced by this structure by
tion of the probability density for the displacements which so|ying the(deterministi¢ equation
develops a narrow maximum =0 and long tail§ 7]. The
most important effect of trajectory trapping consists of the dX(t)
decrease of the diffusion coefficient and of the change of its T=V(X(t),t;¢°,v°), X(0)=0, (14)
dependeznce on the Kubo number from the Bohm scaling
[ND(?\Z/(T)\){(T&%]K[]5_;§ percolation  type  scaling [Dy, the solution of whichX(t; #°,v°) definesthe decorrelation

A necw statistical approach, the decorrelation trajector _rajectoryin the ;ubepsembl@l). We note thgb((t;cﬁf’,vo) .
method, which is able to describe this complicated selfiS hotan approxmatlon c_>f _the average _pa_rtlcle_ trajectory in
consistent trapping was developed in R@). It applies to f[he_ subensemble: rather it is a determlnlstlc trajectory Wh_lch
Gaussian stochastic fields which are homogeneous, statiofl- introduced to represent the dynamics of the de%orrelatmn.
ary and determine stationary LVC’s. Actually there are sev- epending on th? EC and on thg pargmetﬁ?s&ndv » two
eral variants of the method which lead to similar results. FoYP€S of trajectories can be _obtalned In g_eneral.
reasons which will become evident later in the text, here we (1) Trajectories along which the velocity goes to zero as

use the space-time decorrelation presented in the Appendtx_’w' This means that the velocity eventually decorrelates

of Ref. [9]. rom v°. ConsequentlyX(t) saturates at a valu¥,. The

The essential point of the new method is that it finds a Ser[nechanism of decorrelation is also exhibitedXff). In this

of deterministic trajectories which are determined by the E -ase, the dec_orrelation can be of two tYDES: time decorrela-
of the potential; the LVC is then approximated using thetion (whenXg is smaller than the correlation lengthr space

average velocity along these trajectories. The idea is to didecorrelatioriwhen the saturation oK(t) is produced in a

vide the space of realizations of the stochastic potential intd M€ 7a smaller than the correlation time of the stochastic
subensembles characterized by given values of the potentiaf'C.-

and of the velocity at the starting point of the trajectosies ~ (2) Closed periodic trajectoriesThese trajectories are
=0, andt=0: confined in the correlated zone: they describe the trapping in

the structure of the stochastic potential.
#(0,00=¢°,  v(0,0)=\°. (11) In the present case, from Egd4) and (13) we obtain
closed paths for all values af° except$®=0, when the
The Eulerian correlation of the velocity COﬂ']pOﬂGEth,t) path is a straight line. The size of the decorrelation paths
can be decomposed into a weighted sum of the Euleriafepends omp®: it is infinite at #°=0 and as ¢°| grows it
correlations of the velocity in each subensemble, decreases continuously and vanishes asymptotically. The
motion on these paths depends on the value’aind on the
B O 0D b 1ONDB(ONES (v 1. 10 0 Kubo number. WherikK <1 the trajectories stop after cover-
Eij(x,1)= de dviPT(¢7) PT(VOEjj (Xt ¢7,V0), ing a small part of the path which is proportionalu8. At
(12 large K the trajectory wind many times around the suffi-
ciently small paths until they stop. The interval of the values
where Eisj (x,t;¢°,v°)E(vi(0,O)uj(x,t))|¢o,vo is the suben- of ¢° (around zerpfor which the decorrelation trajectories
semble Eulerian correlation, i.e., it is an average conditionedo not perform a complete turn decreases with the increase

V2 \7¢
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o

of the Kubo number. WheK —, the motion is no longer 10 . - . . - .
attenuated, and all trajectories become periodic except on
(corresponding t@°=0). This means that the decorrelation
is produced only by the time variation of the stochastic po-
tential. Its space structure produces the trapping of trajecto
ries (space decorrelation does not exist in this stochastic mo- 1'¢ 1
tion).

The approximation on which our model is based consists
of considering that the Lagrangian correlation of the velocity
components is a weighted sum of the correlations observet
along the decorrelation trajectorin each subensembiél): 107 ]

Ly (0= f dg VOPY( 9PV OV, (X(1).1; 6V0)).

(19
10-3~2 IA IO II I2 I3 I4 5
Actually, the decorrelation trajectories are functions of only % 10 © PR 1 10 "
two independent variable(t; ¢°,v°)=X(Kut,p), where _ o _ _
dimensionless variables were used takh@s the unit for FIG. 1. The functionF(6) defined in Eq(16) which describes

distances . for the time, 8 for the potential, and/=p/\ the effect of trajectory trapping.
for the velocities. The parameteusand p are defined byu ) ) .
=|v°| andp= ¢°/u. It was shown that the statistical effect of the largeK nonlinear regime. The decay is due to the de-

trajectory trapping is represented by a functi(g) which  correlation trajectories which perform many rotations, and
is defined as consequently their contribution in E¢L6) is eliminated by

an incoherent mixing in the integral. The diffusion coeffi-
cient at largeK is thus determined by a small part of the
X(ué;p), trajectories which are not trapped, i.e., which perform less
than one rotation during the decorrelation time. A scaling in
(16 K which is close to the percolation estim$& was obtained
in Ref.[9].

The conclusion is that the diffusion coefficient of the par-
ticles moving in a stochastic potentia(x,t) results from a
gompetition between trapping and decorrelation: the trapping
process is determined by the space structuré(aft), while
the decorrelatior(or trajectory releageis produced by the
), (17)  time variation of(x,t).

u?(1+p?)

1 e
F(G)ZEL dpdu L?ex;{—T

whereX(u#é,p) is here thex component of the decorrelation
trajectoriesX(t; ¢°,v°) calculated fort=u6, #°=pu and
vP=(1,0) alongx. The LVC and the time dependent diffu-
sion coefficient can be expressed in terms of this function a

B\? t

c

A2 IV. PARTICLE COLLISIONS
D(t;K)=—KF(8(K,1)), (18)

Te The picture presented in Sec. Il can be strongly modified
by particle collisions. We come back now to the generic
model presented in Sec. Il. The stochastic veloejfy) de-
termines a collisionalBrownian displacement

whereF’ is the derivative of, and

t
(K, t)=K 1—exp<—— (19
Te i
e . . §(t)=fdﬂ7(f)- (21)
The asymptotic diffusion coefficient can be written as 0
N2 . . . . .
_ _ This equation defines a Gaussian nonstationary Markov sto-
D(K)= —KF(K)=B8F(K). 20
() Tc (K)=BF(K) 20 chastic variable known as the Wiener proc¢sg]. This

_ _ ~_ Brownian motion has zero average, and the correlation
The general shape of the functiéit 0) is represented in Fig.

1. The physical significance of this function results from Egs. YAV Y S ,
(18)—(20). For #=V1t/\ €[0,°), F represents the time de- G(D& () =26 x min[t,U']. 22

pendence of the running diffusion coefficient for the stochas-_ . ) . -
tic particle motion in a frozen turbulence—=,K—x). At  Since the collisions and the stochastic potential are statisti-

a fixed valued=K, F(K) is the asymptotic diffusion coef- cally independent variables, one can perform the change of
ficient (normalized with8) in a time dependent turbulence Variable

with Kubo numberK. As seen in Fig. 1F(#) has a linear

part at smalld [F(6)= 6 for #<1], a maximum, and then a X'(1)=x(t)— &), (23

long (algebrai¢ decay to zero. The linear part corresponds to

the quasilinear regime[iQL~K2) and the decaying part to which transforms Eq(1) into
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dx'() Vo +&1),HXe, ol |ti—t,]

dt =— Bo s (24) E —,3 exp — T—c
and introduces the collisional displacements in the spatial XJ d2¢,d2E,E(x, + E(ty) — X
argument of the potential which becomes a doubly stochastic 152 v

variable(stochastic function of a stoche_lsti(_: varigble CH))PS( £t t)
We show that the doubly stochastic fiel(x+ £(t),t) 27T 28152020
preserves the statistical properties of the potenfigk,t),  \where PS(&;,t;:4,,t,) is the two-point probability density
namely, it is stationary, homogeneous, isotropic, and has gy haying the collisional displacemed att, and £, att,.
Gaussian one-point probability density liggx,t). The col- For t,>t;,PS(&r, 6 1) = PS(&1 L) PS(&— &1 to—ty).

Iisignsf dhetermine a modti)ficbe}lt_ion dOf the Eulerian CorrelationStraightforward calculations lead to the following expression
and of the two.-pomt proba llity density @f(x+ £(t),1). for the EC of the potential in the presence of collisions:
The probability to find the valueb; of the doubly sto-

(30

chastic potential in the poink(t) is defined by the following coll 5 ol |t]
average over the two stochastic variables: E*N(x,t)=B°E (X t)expy — Pk (31
Pi(d1:x,1)=(8[ p1— (X + &(1),1))]. where
;t can be calculated using the Fourier representation obthe 5co||(x’t)5j f d2£ E(x+ HPS(E). (32)
unction,
In Egs.(31) and (32), x=x,—X; andt=t,—t;; this shows
Pl(¢l;x,t)=J dqe*‘q‘le’ j d2ePS(£,1) that the collision-averaged EC of the potenti#l''(x,t) is
stationary and homogeneous, lik€x,t).
x(exdigo(x+ £1)]), (25) Thus the average effect of the collisional noigg) con-

sists of the modification of the EC of the potential. More
where the average over the collisional noise was written exspecifically, the space dependence of the correlaf{o) is
plicitly using the probability density for the collisional dis- transformed inta€°°"(x,t) [Eq. (32)], gaining an additional
placements: time dependence which is diffusive evolution Indeed,
£cll(x,t) is the solution of the diffusion equation.

2
Pl(git): 47TXt GX% —4—Xt) (26) %SCO"(X,t)=XV25C°”(X,t), (33)

The superscript shows that the stochastic parameter in thiswith the initial condition& ®°" (x,t =

0)=£&(x). Consequently,
probability density is the collisional velocityy(t). Since )=£(x). Consequently

) D h point th o . the average effect of collisions consists of progressively
¢(x,1) is Gaussian in each poinf the remaining average in - gy aothing out the EC of the potential and of eliminating

Eq. (25) is exp(~¢°4/2) and, after performing the integrals, asymptotically the space dependence of the correlation.
one obtains the Gaussian probability distribution for the val- “prticle collisions do not affect the isotropy property of
ues of the potential: the potential: ifE(x,t) is isotropic therE®'(x,t) is a func-
) tion of r=|x| as well. In these conditions a change of vari-
1 exnl — ﬂ 27) able & =x+ & can be performed in Eq32) and the polar
/2773 22) coordinatest’ = (p, @) (wherea is the angle formed by the
vectorsx and£’) can be introduced. The integral overcan
Similar straightforward calculations show that the two-pointPe performed analytically, yielding

probability density for the doubly stochastic potentigix ( ; ) (2 2
p

Pi(¢rix,t)=

+ &(t),t) is a convolution of Gaussian probabilities: geoll(y )= 1 dep pE(p)ly

2y Jo 2 2
Pa 1. X1t 62, X+ Xt H1) €m €m 2 (t)(34)

= | d2ePS(£,0)PL(h,,0,0:0h, x+ 1), 28 where 1 is the Bessel function of imaginary argument.

f EPIEDP2(¢1,00id2 X+ i) 8 Equation (34) indeed shows thag®®" depends only orr
whenE(x,t) is isotropic.

whereP$ is the two-point probability density for the poten- e note that in the correlatioB®"(x,t) there is an im-

tial ¢(x,t) (in the absence of collisions portant difference between the time dependence determined
The EC of the doubly stochastic potentia(x+£(t),t), by the time variation of the potentifthe exponential factor
defined by in Eq. (31)] and the time dependence induced by the colli-

sions. The space integral &°°'"(x,t) is

El=(p(x,+ &(ty), ) plxo+ E(t) 1)), (29
2, coll —p2 — i) 2
can be written, using Eq3), as J f e eXF{ " f j e
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where the effect of collisions has disappeared. This shows dy JH(X,Y,t) Pt
that the time variation of the potential destroys the correla- at PUTGX Bk
tions, while particle collisions only “spread” them. We will

h hat this diff i ff in the . I .
Zif?L\l/;i(t)na(t:;eﬁc?én(terence produces important effects in t € Jith the Hamiltoniand defined by

The EC of the velocity components averaged over the

collisional displa_cementﬁfjo”(?(,t)_, can be calculated as the HOXY D) = an p)gcoll(R’t)’ (40)
EC of the potential; the result is similar to E¢31) and(32). Y

Thus all these correlations have a diffusive evolution leading
to spatially uniform functions. Consequently, one can showyhere p= ¢°/u and R=\X?+Y?. These equations have a
that Eﬁ-"”(x,t) can be derived from the EC of the potential Hamiltonian structure as in the collisionless case. The colli-
Ec!(x,t) by the same equation®) as in the collisionless sions introduce the time dependenceHnin the following
case: way. The functiorH [Eq. (40)] is a solution of theirrevers-
ible) diffusion equatior(33). This function formally acts as a
32 &2 Hamiltonian in Egs.(39). There is, however, no paradox
—EPL BRI ———E® ... (39 here, becausel(X,Y,t) is only defined fort>0 [the solu-
ay? vy 2 'ere, becaus (X,Y,t) is only defined fort> [the solu
tions of Eq.(33) form a semigroufp hence time cannot be
In order to determine the LVC and the diffusion coeffi- inversed. The seemingly “reversible” equatiof89) thus
cient by means of the decorrelation trajectory method, weactually de_scnbe an irreversible evolution. The decorrelation
have to specify the spatial dependence of the EC of the pd2aths obtained from Eq$39) and (40) are much more com-

tential. We consider the same model as in ReF: plicated than in the collisionless case. They are no longer
closed curves. The decorrelation trajectories are functions of

four independent variables{(t)=X(t;K,Pu,p), while in
(36)  the collisionless case there were only two variabkest(and

p).

* ﬁ The LVC is determined according to E@.5) as the La-
grangian correlation observed along the decorrelation trajec-

In the following calculation dimensionless variables will be tories. The running diffusion coefficient obtained by integrat-
used, taking as units for distancesy.,, =A%y for time, 3 ing the LVC is
for the potential, and/= B/\ for velocities (without intro-
ducing different notations The collision averaged EC of the 1 [
potential corresponding to E¢86) can be written in a sim- D(t;K,P)=ﬁ—f dpdu ¢
pler form than the general expressi(8#): V2mlo

coll _ __
Exx -

&r)=

r2

u2
& xexp(—7(p2+1))X(t;Pu,p,K). (41)
1 g~y
coll t)= — OCd t
ey = 2t)o § (r— )72 (r+£)2 ' This expression is simile_lr to EgéL8) and (16), but_dpe to
1+ ) ( the presence of several independent parameters it is not pos-
2 2 sible as in the collisionless case to compbDtg) in the fro-

(37)  zen turbulence limit K— o), thus obtaining the functiof
] . _ .. which actually determines the diffusion coefficient for aqy
The decorrelation trajectory method starts from dividing[see Eq(20)]. Here, the time dependent diffusion coefficient
the space of realizations of the stochastic poterfi@d,t) in (41) must be calculated up to its asymptotic value for each
subensembles determined by conditidrl). We determine  yajye ofK andP independently. The calculation procedure is
the average of the doubly stochastic velocity in each subennych more complicated and the computation effort much
semble. As shown in the Appendix, the result is similar tojarger. The only possible simplification is to determine and
Eq. (13) obtained in the collisionless case: to store on a large size mesh, t; the collision average EC
olle vn 20 On T of the potentials¢®''(r,t) and its first and second derivatives,
VP8 @7, v7) = (v (x+ &(1), 1) 4o,v0 and to use space and time interpolation in the numerical
coll coll integration of the decorrelation trajectories. The space de-
_oEij (x,1) + g0 Egi (XD (38) rivatives of £°°!' which enter in the decorrelation equations
o2 \7: (39 are calculated using the analytical derivatives of Eq.
(37 and numerically performing the resulting space inte-
Defining thex axis in the direction of the initial velocity, we grals. The order of the calculation of the two integrals in Eq.
havev®=(u,0). The equations for the decorrelation trajec-(41) is important: the integral oven has to be performed
tory (14) in subensembléll) are obtained, using Eq§38) first.
and(35), as The effective diffusion coefficient of collisional particles
moving in a stochastic potential is obtained from E&l) as
dx aH(x,Y,t)exp( Pt)

at- PUT 5y K

39 Deri=D(K,P)+ y, 42
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FIG. 2. Examples of decorrelation paths obtained from (86) FIG. 3. The running diffusion coefficieri1) for P=100 and

- — 0 ) P _ _ _ , .
for various values op=¢"/u; P=50, K=200, andu=1. K =500 (continuous ling compared to the result presented in Ref.

. . . . [10] (dotted line.
where the “interaction” termD(K,P) is given by the

asymptotic value of Eq(41) and involves the combined ac- |t the evolution of D(t) would end here a result similar to
tion of the stochastic field and collisiong. is the always Eq. (20) would be obtainedD = SF(P). But, att> 7., an

present direct contribution of collisions. increase of the diffusion coefficient is observed. After that, at
t=r7., the time variation of the potential eventually deter-
V. RESULTS mines the saturation dd(t).

The LVC is represented in Fig. 4. Since this function has
a long tail, we represent log{). One can observe first the
decay of the LVC in a time of the ordet, , then, between
the two singularities which appear in this logarithmic repre-
sentation, there is the negative LVC which is determined by
particle trapping. At~ 7.4, the LVC goes to zero, and, at
t>7.o1, @ positive LVC appears due to collisions. This
shows that the collisions do not produce the decorrelation of
the trajectories but instead they “create” Lagrangian corre-
lations at large times. Compared to the collisionless LVC
corresponding to the same valuekofand toP—« (dashed

The decorrelation paths obtained from E89) are much
more complicated than in the collisionless cdaefew ex-
amples are presented in Fig. They show that the trapping
effect is still effective at large Kubo and &et numbers: the
trajectories corresponding to large valuespsf|¢°/u| are
almost closedup to a small drift in the direction perpendicu-
lar tov°, here along thg axis). These trapped trajectories do
not contribute to the diffusion coefficient. The latter is deter-
mined by the trajectories which are not trapged., which
perform less than one rotation before they s$tdpney corre-
spond to small values gp. In the collisionless case this
effective range op aroundp=0 depends oK (it goes to
zero asKk —o). The collisions produce the increase of this
effective range ofp. Thus the collisions have a releasing
effect enlarging the number of “untrapped” trajectories.

A nontrivial time dependence of the running diffusion co-
efficient is obtained from Eq41l). As seen in Fig. 3 there 10
appear several transient regimes at lakgand P. First, at
t<r,, there is a linear dependenbgt) ~t, since the time
elapsed is smaller than the transit timg and the particles
have not yet “seen” the structure of the stochastic potential.
Then, atr, <t<7, the trapping process is effective and
the diffusion coefficient is decreased. As can be observed ir
Fig. 3 compared to Fig. 1, this first part of the evolution of
D(t) is actually determined by the functidt( 6) obtained in o
the collisionless case. Thus the collisions do not influence

the evolution of the diffusion coefficient at times much .

IL(t; K.Y/ V2

smaller that the collisional characteristic timg,,. At t ' 10 e 10
=170, @ tendency of saturation of the diffusion coefficient i
appears. FIG. 4. The absolute value of the LVC f&= 100 (continuous

This is similar to what happens in the collisionless prob-jine) and for the collisionless cageotted ling; K=500. Between
lem: att= Tc the time variation of the stochastic potentlal the singularities corresponding to the zerosLgf;K,P) lies the

produces the decorrelation of the trajectories and as a resuegative LVC determined by trapping. The effect of the collisions
the LVC goes to zero and the diffusion coefficient saturatesappears at large times* .,), where they induce a positive LVC.
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line in Fig. 4, the effect of particle collisions appears very 1’ . - - . - .
clearly: they produce a bump on the negative tail of the LVC
at TCO||<t< T

This picture is in agreement with the results obtained by
means of the renormalization group technique which is able
to determine the asymptotic scalingtimf the MSD of col-
lisional particles moving in &tatic stochastic potentialsee
Refs. [10,13—-19). The heuristic argument for explaining =,
these induced correlations is that the collisional displacemeny
(the Brownian motiohdetermines long range temporal cor- ©
relations in the sequence of the values of the potential en:
countered because in two dimensions the Brownian trajec
tory returns in the already visited places with probability
one. As a result, the time spent durihim each visited place
is of the order Inf). A shown in Refs[10] and[13], in a
two-dimensional space, the “interaction” of the diffusive 42

~1

collisional motion with the subdiffusive process induced by " 0 "y ° " "
the static stochastic potential determines a supradiffusive o o .
asymptotic behavior of the MSD proportionalttgIn(t). For FIG. 5. The asymptotic diffusion coefficieit(K,P) obtained

the time dependenstochastic potential, we obtain this time ffom EQ.(41) as a function oK for several values oP.
dependence of the MSD as a transient regime. This can be
seen in Fig. 3 where the running diffusion coeffici@ntt)  whereD(K) is the collisionless diffusion coefficient deduced
~/In(t), corresponding to the above MSD, is represented byn Ref.[9] and given in Eq(20).
the dotted line and compared to our resDift;K,P). We In the quasilinear regime defined By<1 (and P<K in
note that, with the decorrelation trajectory method, we obtairPrder to have a collision effetthe interaction term of the
this supradiffusive behavior as a transient regime in a statiffective diffusion coefficientD(K,P) can easily be esti-
potential as well. This problem will be discussed in a forth-mated from Eqs(39). The displacement produced during the
coming paper, where “random random walks” are studied incollision time 7., is much smaller than\, and the
two and three dimensions in the case of short and long ranggsymptotic value oX(t) is approximatelycPu where the
EC of the potential. constant is the time integral ofH (X,Y,t)/dY calculated in
X=0 andY=0 which for the EC[Eq. (36)] yields c=0.5.

Upon substitution in Eqg41) and(42), one obtains
VI. DIFFUSION REGIMES

1
cPt+5|, P<l, P<K. (44)

Collisional particle diffusion in a time dependent stochas-
tic potential depends on three characteristic times: the transit Der=8
time 7, =\/V, the correlation time of the stochastic poten-
tial, 7., and the collisional time.,,=\?/x. They are com- o _ o _ _ _
bined in two dimensionless parameters: the Kubo numbefNis is a highly collisional regimex(> ) in which the sto-
K=r./7, and the Pelet numberP= 7./, . Depending chqstlc poten_tl_al has a small contrlbutl_on: the dl_rect contri-
on the values of these parameters, several diffusion regimdiltion of collisionsy [the second term in Ed44)] is actu-
are obtained. They can be understood by analyzing the equély dominant. However, we note that in this strongly
tions for the decorrelation trajectorié39). collisional case the scaling o_f the diffusion coefficient with

Simple arguments show that collisions can have an import€SPect to the Kubo number is of Bohm type eveiatl,
tant role in the interaction term of the effective diffusion Which means that the trapping process does not appear in this
coefficient(42) whenP<K. In the opposite cas®>K (or c_ase(due to collisions which strongly scatter the trajecto-
Teon> 7o), during the correlation time of the stochastic po-"€9- _ . _ _
tential the collisional Brownian motion is negligible com- The most interesting results appear in the nonlinear re-
pared tox and there is no interaction between the effects ofdime defined by>1, i.e., when the collisional diffusion is
the two stochastic processes. This can easily be seen in tNgak (x<p). In these conditions, the first term in B¢2) is
equation for the decorrelation trajectori@®) where the ex- dominant, the direct contribution of the collisions being neg-
ponential factor corresponding to the time variation of theligible. WhenP>1 andK=P, the diffusion coefficient de-
potential produces in these conditions the decay of the decdends on both parameters. _
rrelation velocity before the EE<®(x,t) changes signifi- The results are prgsented in Fig. 5, where .the “interac-
cantly in time. Thus, Eqs(39) are practically identical with tion” term D(K,P)/B is represented as a function kffor
those obtained in the collisionless case and the effective dif¢@rious values oP. First we note that the above estimates
fusion coefficien(42) is the sum of the diffusion coefficients for the quasilinear regime are confirmed: the curvesHor

determined separately by each stochastic process, =0.1 andP=1 show the transition between regirt43) at
K<P to regime(44) at K>P. The transition is slow, lying

on several orders of magnitude I§f This term is actually at
43) P<1 just a correction to the much larger collisional diffu-
sivity y.

, P>K,

1
Deff:D(K)+X:,8( F(K)+ P
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1o’ . . . mun), and multiplies it by a factor of order 10 &t=1000.
The scaling of the diffusion coefficient in the Kubo number
is changed by collisions in this range of parameters: the dif-
fusion coefficient has a minimum &=P and then, aK

>P, a super-Bohm regime was found. The physical reason
for this “anomalous” effect is particle trapping in the struc-
ture of the stochastic potential, combined with the collisional
Brownian motion which in two dimensions generates long
time correlations by returning in the places already visited.

DylK.P) /B
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FIG. 6. The total asymptotic diffusion coefficieltys1(K,P)
[Eq. (42)], as a function oP for several values oK. APPENDIX
The average of the doubly stochastic velocity in the sub-

In the nonlinear regim®>1, we can see that an impor- ensemblg11) [defined by Eq(38)] can be written explicitly
tant amplification of the effective diffusion can be producedas
by a small collisional diffusiony. The collisionless result
(the dashed curve in Fig) s also represented for compari- veollix,t: ¢2,v0)
son. As seen in Fig. 5, the scaling of the diffusion coefficient
D(K,P) in the Kubo number is not influenced by collisions (VO[v—Vv(x+ &1),1)]8(v°—v(0,0)) 8(4°— ¢(0,0)))
at K<P (where the quasilinear and the percolation regime =
can be observedut after that, aK =P, theK dependence is (8(v°—v(0,0))8(¢p°— ¢(0,0)))
strongly changed. At the “resonance” conditiste=P (i.e.,
T.=T.o) @ wide minimum of the diffusion coefficient ap- Using the Fourier representation of téefunctions and the
pears. Then, aK increases, the percolation scaling is trans-explicit definition of the collision average, one obtains
formed into a super-Bohm regime with & dependence

stronger than linear: V;ollz i - ! J fdkldkquf dvuy
D(K,P)~KY7  K>P>1. (45) PV, ¢7) (27)

The dependence of the effective diffusion coefficighy. Xexq—ikl~v—ik2-v°—iq¢°)J d?EPS(£ DA,
(42)] D¢/ B8 on the Pelet numberP in presented in Fig. 6
for several values oK. One can observe that &<1 the  \yhere
effective diffusion coefficient is independenti$fand can be
approximated by the collisional diffusion The effect of the A=(exdik-v(x+ &) +ik,-v(0,0)+iq¢(0,0)])
stochastic potential becomes important at laPgehere the
effective diffusion coefficient is much larger that The con-  The integral overdv is (2m)3 d(kqy) (d/dkyy) 5(kqy), and
tribution of the stochastic potential is independent of colli-the integral oveidk,; can be calculated:
sions(i.e., of P) at smallK but at largeK it is a complicated
interaction between the dynamical trapping of the particles coll —(2m) S
and the collisional Brownian motion. Vy ZP(T(;‘)O)j dk,dq
1 ’

VIlI. CONCLUSIONS . 0 i 40 2 J
xXexp(—iky-vi—iqeT) | d fpg(f,t)aTNkl:o-
We have shown here that particle collisions can produce x
important modifications of the effective transport coefficients fter calculating the averagh over the realizations of the

in a given two-dimensional electrostatic turbulence. We hav G ian stochasti tential and the derivativ ne ob-
determined the diffusion coefficient induced by the com- aussiah stochastic potential a € derivative, one o

bined process of collisions and time dependent stochasti ins

potential. A large amplification of the diffusion coefficient

appears in low frequency plasma turbulenkex1) due to a LA| _ [ KEp(X &) N qEg(X+ 1)
small collisional diffusiony<g (P>1). As an example, a kg K70 V2 VB

collisional diffusiony which is only 1% of the amplitude of 2
the stochastic potentialy=10~23,P=100) approximately % exg — ky+q
doubles the diffusion aK=P (where the effect is mini- 2 '
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The subensemble average velocity can be written as which leads to Eq(38). Thus, the subensemble average of
the doubly stochastic velocity is similar with that obtained in
coll_ 1 J 42 pe the collisionless casEq. (13)] although the corresponding
X _W §Pi(ED) two-point probability density is not of Gaussian type. The
' latter is given by a convolution similar to E(8):

Ex(x+&t) a
V2 (h)JO PZ(V01¢01010;V1X11t1)
LEaXtEYD 9 | 0 0 =f d2£ PS(£,t) PS(V0, 42,00V, x+ £1).
—va ol PV, ! 2
VB 9¢°
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