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Collisional effects on diffusion scaling laws in electrostatic turbulence
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The effect of particle collisions on effective transport in two-dimensional electrostatic plasma turbulence is
studied analytically in the framework of a test particle approach. We show that an amplification of the diffusion
coefficient can be produced by the combined effect of collisions and trajectory trapping in the structure of the
stochastic potential.

PACS number~s!: 52.35.Ra, 52.25.Fi, 02.50.2r, 05.40.2a
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I. INTRODUCTION

Particle and energy transport in turbulent plasmas
been intensively studied in the context of plasma fusion
search. In addition to self-consistent analyses which d
with plasma instabilities and their nonlinear developme
the test particle approach leads to interesting results. Deta
studies in this framework were devoted to the influence
particle collisions on the effective transport in magnetic t
bulence@1–4#. They proved the existence of several tran
port regimes which are rather different from the collisionle
one. However, a similar study concerning the diffusion
collisional particles in electrostatic turbulence has not b
performed until now, to our knowledge. This problem
treated here. More precisely, we determine the time dep
dent diffusion coefficient of collisional particles moving in
two-dimensional stochastic potential as generated in a m
netically confined~tokamak! plasma.

Previous papers@5–7# demonstrated that a process of tr
jectory trapping around the extrema of the potential appe
in a low frequency turbulence. This process determine
decrease of the diffusion coefficient and the change of
scaling in the parameters of the stochastic field~represented
by the Kubo numberK which will be defined in Sec. II!.
More precisely, this trapping process changes the dep
dence onK of the diffusion coefficient from a Bohm to
percolation scaling law@8#. We show here that a weak co
lisional diffusivity of the particles can produce a decisi
influence on the effective diffusion. Important nonlinear e
fects are shown to appear in close connection with trajec
trapping. A detailed study of the possible diffusion regim
is presented. The dependence of the diffusion coefficien
the Kubo number can be significantly changed due to co
sions.

Our model is based on Langevin-type equations that
scribe particle guiding center trajectories. We use thede-
correlation trajectory method@9#, a recently developed sta
tistical approach describing the complicated process of
jectory trapping.

The problem of the evolution of collisional particles
stochastic velocity fields was studied for the case of fro
turbulence~quenched disorder or ‘‘random random walks!
in a large number of papers related especially to solid s
PRE 611063-651X/2000/61~3!/3023~10!/$15.00
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physics and fluid turbulence. A detailed review of this wo
was presented in Refs.@10# and@8#. See also the very recen
review paper by Majda and Kramer@11#. The main aim of
these studies was to find under what conditions the proce
superdiffusive or subdiffusive, and to determine t
asymptotic exponentg of the time dependence of the mea
square displacement of the particles„R2(t);t2g

…. From the
mathematical point of view, these studies use renormal
tion group techniques which are adequate for determining
but not the details of the evolution of the stochastic mot
which are contained in the running diffusion coefficient or
the Lagrangian correlation of the velocity. Although o
model is different from that of Ref.@10# in the sense that we
are interested in time dependent stochastic fields as they
pear in plasma turbulence, we show that our results ar
qualitative agreement with those of Ref.@10#. This strength-
ens the idea that the decorrelation trajectory method i
powerful tool for analyses of these kinds of problems. It h
the advantage of yielding more detailed information~the La-
grangian correlation of the stochastic velocity! and also a
more intuitive physical picture.

The paper is organized as follows. The model and
system of equations are formulated in Sec. II. A short
scription of the process of trajectory trapping around the
trema of the stochastic potential and of the decorrelation
jectory method is presented in Sec. III. The effect of parti
collisions is treated in Sec. IV, where the running diffusi
coefficient is determined. Section V contains the analyse
the results, and Sec. VI a detailed study of the possible
fusion regimes. The conclusions are summarized in Sec.

II. MODEL

The test particle models determine the transport indu
by a stochastic field whose statistical characteristics are
posed to be known from experimental measurements. T
allows one to ignore the collective effects which produce
stochastic field, and to concentrate on determining the sta
tics of the individual particle trajectories. In the case
Gaussian stochastic fields, a complete experimental des
tion consists of measuring the average velocity and the t
point Eulerian correlation of the potential~which is equiva-
lent to the wave number spectrum!. Two equivalent
3023 ©2000 The American Physical Society
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mathematical formulations are possible for these models:
Langevin equation for the stochastic trajectories or
Fokker-Planck equation for the evolution of the probabil
density of the displacements. The first variant is used in
paper.

We consider a slab geometry with a strong confin
magnetic fieldB0 along thez axis and a fluctuating potentia
f(x,t) in the planex5(x,y). The particle motion in the
guiding center approximation reads.

dx~ t !

dt
5v„x~ t !,t…1h~ t !, x~0!50, ~1!

where

v~x,t !52
“f~x,t !3ez

B0
, ~2!

and h(t) is the collisional stochastic velocity. The electr
static potentialf(x,t) is a stochastic field considered to b
Gaussian, stationary, and homogeneous. Since the vel
components are derivatives of the potential, they are Ga
ian, stationary, and homogeneous as well. We assume
they have zero averages. The two-point Eulerian correla
~EC! function of the potential is modeled by

E~x,t ![^f~x1 ,t1!f~x11x,t11t !&

5b2E~x!expS 2
utu
tc

D . ~3!

Angular brackets denote the statistical average over the
izations of the stochastic potential field,b is the amplitude of
the potential fluctuations~divided by B0), and tc is their
correlation time.E(x) is a dimensionless function which de
cays fromE(0)51 ~where it has a maximum! to zero when
uxu→`; its form is left unspecified at this stage. A dime
sionless parameter,the Kubo numbercan be defined as

K5Vtc /l, V5b/l, ~4!

whereV measures the amplitude of the fluctuating veloc
andl is a characteristic wavelength of the turbulence, wh
will be called the correlation length. The Kubo number
thus the ratio of the average distance covered by the part
during the correlation time of the stochastic velocity field
its correlation length. It represents a measure of the partic
capacity of exploring the space structure of the velocity fi
before the latter changes. In mathematical terms, this K
number determines the importance of the Lagrangian non
earity introduced in Eq.~1! by the space dependence of t
velocity field.

The two-point EC of the velocity components and of t
potential with the velocity,Ei j (x,t)[^v i(0,0)v j (x,t)& and
Ef i[^f(0,0)v i(x,t)&, are obtained fromE(x,t) by appro-
priate derivatives:

Exx52
]2

]y2
E, Eyy52

]2

]x2
E, Exy5

]2

]x]y
E,

Exf52Efx5
]

]y
E, Eyf52Efy52

]

]x
E. ~5!
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The collisional velocityh is modeled by a zero averag
white Gaussian noise,

h i~ t1!h j~ t11t !5d i j xnd~nutu!, ~6!

where n is interpreted as the collision frequency of th
plasma, andx5Vth

2 n/2V2 as the~classical! cross-field colli-
sional diffusion coefficient (Vth is the thermal velocity and
V5eB0 /m is the gyration frequency!. The bar represents
the average over the realizations of the collisional velocityh.
The collisions introduce a second dimensionless parame
the Péclet number@8#

P5
b

x
5

tcoll

t tr
, ~7!

where the transit timet tr5l/V is the time during which a
particle with the velocityV goes through the correlatio
length, and the collisional timetcoll5l2/x is the time dur-
ing which the collisional mean square displacement atta
l2. The Pe´clet number is a measure of the particle’s capac
of exploring the space structure of the velocity field in t
presence of collisions which scatter the trajectories. Si
Eq. ~4! can be written asK5tc /t tr , one can note that Kubo
and Pe´clet numbers are similar in the sense that both
scribe physical effects~time variation of the potential and
collisions respectively! which perturb the motion along th
potential contour lines. Large values ofP ~i.e., a small col-
lisional diffusion x) and large values ofK correspond to
nonlinear regimes strongly influenced by the structure of
stochastic potential.

The mean square displacement~MSD! of the particles and
the running diffusion coefficient are determined from t
two-point correlation function of the Lagrangian velocit
The latter is defined as

Li j ~ t;t1![^v i„x~ t1!,t1…v j„x~ t11t !,t11t…&, ~8!

and will be called for simplicityLagrangian velocity corre-
lation ~LVC!. In the stationary and homogeneous case o
can assume that the LVC depends only on the time intervt,
and the MSD can be written as

^xi
2~ t !&52E

0

t

dtLii ~t!~ t2t!. ~9!

The running diffusion coefficient defined asDi(t)
[ 1

2 (d/dt)^xi
2(t)& is

Di~ t !5E
0

t

dtLii ~t!. ~10!

Thus the diffusion problem reduces to the determination
the LVC, knowing the statistical description of the stochas
potential. We use the decorrelation trajectory method wh
was developed for the collisionless problem in Ref.@9#. A
short review of these results and of the method is prese
in Sec. III. This is necessary for understanding the eff
introduced by particle collisions. The latter is determined
Sec. IV, where the running diffusion coefficient is dete
mined for all values of the Kubo and Pe´clet numbers.
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III. PARTICLE TRAPPING AND THE DECORRELATION
TRAJECTORY METHOD

The particular case of collisionless particles@h50 in Eq.
~1!, i.e., P→`] was studied earlier both numerically b
means of direct simulation of trajectories and analytica
For small Kubo numbers~quasilinear regime!, the results are
well established: the diffusion coefficient isDQL
5(l2/tc)K

2. At largeK the time variation of the stochasti
potential is slow and the trajectories can approximately
low the contour lines off(x,t). The space structure of th
stochastic potential has an important influence on part
trajectories. This produces a trapping effect: the trajecto
are confined for long periods in small regions. A typic
trajectory shows an alternation of large displacements
trapping events. The latter appear when the particles
close to the maxima or minima of the potential and cons
of trajectory winding ~for many turns! on almost closed
small size paths. The large displacements are produced w
the trajectories are at small absolute values of the poten
Numerical calculations show that the Lagrangian stocha
velocity v„x(t),t… of the particles is Gaussian and stationa
at any time during their motion. The displacementsx(t) are
Gaussian only for a very small time interval. At later time
the process of trajectory trapping determines the modifi
tion of the probability density for the displacements whi
develops a narrow maximum inx50 and long tails@7#. The
most important effect of trajectory trapping consists of t
decrease of the diffusion coefficient and of the change o
dependence on the Kubo number from the Bohm sca
@DB;(l2/tc)K# to percolation type scaling @Dp
;(l2/tc)K

0.7# @5–7#.
A new statistical approach, the decorrelation traject

method, which is able to describe this complicated s
consistent trapping was developed in Ref.@9#. It applies to
Gaussian stochastic fields which are homogeneous, sta
ary and determine stationary LVC’s. Actually there are s
eral variants of the method which lead to similar results. F
reasons which will become evident later in the text, here
use the space-time decorrelation presented in the Appe
of Ref. @9#.

The essential point of the new method is that it finds a
of deterministic trajectories which are determined by the
of the potential; the LVC is then approximated using t
average velocity along these trajectories. The idea is to
vide the space of realizations of the stochastic potential
subensembles characterized by given values of the pote
and of the velocity at the starting point of the trajectoriesx
50, andt50:

f~0,0!5f0, v~0,0!5v0. ~11!

The Eulerian correlation of the velocity componentsEi j (x,t)
can be decomposed into a weighted sum of the Eule
correlations of the velocity in each subensemble,

Ei j ~x,t !5E E df0dv0P1
f~f0!P1

f~v0!Ei j
s ~x,t;f0,v0!,

~12!

where Ei j
s (x,t;f0,v0)[^v i(0,0) v j (x,t)&uf0,v0 is the suben-

semble Eulerian correlation, i.e., it is an average conditio
.
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by Eq. ~11!. P1
f(f0) and P1

f(v0), respectively, are the
Gaussian probability densities of the potential and of
velocity. The upperscriptf shows that the stochastic func
tion in this probability is the potentialf. We note that Eq.
~12! is an exact equation. The Eulerian correlation in t
subensemble can be written asEi j

s (x,t;f0,v0)
5v i

0^v j (x,t)&uf0,v0, where^v j (x,t)&uf0,v0 is the Eulerian av-
erage velocity in the subensemble~11!. The latter is deter-
mined using the Gaussian conditional probability density
having the velocityv in the point (x,t) when condition~11!
is imposed. Straightforward calculations lead to

Vj~x,t;f0,v0![^v j~x,t !&uf0,v0

5v i
0 Ei j ~x,t !

V2
1f0

Ef j~x,t !

Vb
. ~13!

Equation~13! exhibits the space-time structure of the corr
lated zone. The average velocity in the subensemble~11! is
v0 in x50 and t50 @becauseE(x) has a maximum there#
and it decays progressively to zero as the time and/or
distance grows. Both time and distance determine the de
rrelation of the velocity.

We determine the dynamics induced by this structure
solving the~deterministic! equation

dX~ t !

dt
5V„X~ t !,t;f0,v0

…, X~0!50, ~14!

the solution of whichX(t;f0,v0) definesthe decorrelation
trajectory in the subensemble~11!. We note thatX(t;f0,v0)
is not an approximation of the average particle trajectory
the subensemble: rather it is a deterministic trajectory wh
is introduced to represent the dynamics of the decorrelat
Depending on the EC and on the parametersf0 andv0, two
types of trajectories can be obtained in general.

(1) Trajectories along which the velocity goes to zero
t→`. This means that the velocity eventually decorrela
from v0. ConsequentlyX(t) saturates at a valueXd . The
mechanism of decorrelation is also exhibited byX(t). In this
case, the decorrelation can be of two types: time decorr
tion ~whenXd is smaller than the correlation length! or space
decorrelation@when the saturation ofX(t) is produced in a
time td smaller than the correlation time of the stochas
field#.

(2) Closed periodic trajectories.These trajectories are
confined in the correlated zone: they describe the trappin
the structure of the stochastic potential.

In the present case, from Eqs.~14! and ~13! we obtain
closed paths for all values off0 exceptf050, when the
path is a straight line. The size of the decorrelation pa
depends onf0: it is infinite at f050 and asuf0u grows it
decreases continuously and vanishes asymptotically.
motion on these paths depends on the value ofv0 and on the
Kubo number. WhenK!1 the trajectories stop after cove
ing a small part of the path which is proportional tov0. At
large K the trajectory wind many times around the suf
ciently small paths until they stop. The interval of the valu
of f0 ~around zero! for which the decorrelation trajectorie
do not perform a complete turn decreases with the incre
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of the Kubo number. WhenK→`, the motion is no longer
attenuated, and all trajectories become periodic except
~corresponding tof050). This means that the decorrelatio
is produced only by the time variation of the stochastic p
tential. Its space structure produces the trapping of traje
ries ~space decorrelation does not exist in this stochastic
tion!.

The approximation on which our model is based cons
of considering that the Lagrangian correlation of the veloc
components is a weighted sum of the correlations obse
along the decorrelation trajectoryin each subensemble~11!:

Li j ~ t !>E df0dv0P1
f~f0!P1

f~v0!v i
0Vj„X~ t !,t;f0,v0)….

~15!

Actually, the decorrelation trajectories are functions of on
two independent variables:X(t;f0,v0)[X(Kut,p), where
dimensionless variables were used takingl as the unit for
distances,tc for the time,b for the potential, andV5b/l
for the velocities. The parametersu andp are defined byu
[uv0u andp[f0/u. It was shown that the statistical effect o
trajectory trapping is represented by a functionF(u) which
is defined as

F~u![
1

A2p
E

0

`

dp du u3 expS 2
u2~11p2!

2 DX~uu;p!,

~16!

whereX(uu,p) is here thex component of the decorrelatio
trajectoriesX(t;f0,v0) calculated fort5uu, f05pu and
v05(1,0) alongx. The LVC and the time dependent diffu
sion coefficient can be expressed in terms of this function

Li j ~ t !>d i j S b

l D 2

F8„u~K,t !…expS 2
t

tc
D , ~17!

D~ t;K !5
l2

tc
KF„u~K,t !…, ~18!

whereF8 is the derivative ofF, and

u~K,t ![KF12expS 2
t

tc
D G . ~19!

The asymptotic diffusion coefficient can be written as

D~K !5
l2

tc
KF~K !5bF~K !. ~20!

The general shape of the functionF(u) is represented in Fig
1. The physical significance of this function results from E
~18!–~20!. For u5Vt/lP@0,̀ ), F represents the time de
pendence of the running diffusion coefficient for the stoch
tic particle motion in a frozen turbulence (tc→`,K→`). At
a fixed valueu5K, F(K) is the asymptotic diffusion coef
ficient ~normalized withb) in a time dependent turbulenc
with Kubo numberK. As seen in Fig. 1,F(u) has a linear
part at smallu @F(u)5u for u!1], a maximum, and then a
long ~algebraic! decay to zero. The linear part corresponds
the quasilinear regime (DQL;K2) and the decaying part to
ne
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o-
o-

ts
y
ed

s
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-

o

the largeK nonlinear regime. The decay is due to the d
correlation trajectories which perform many rotations, a
consequently their contribution in Eq.~16! is eliminated by
an incoherent mixing in the integral. The diffusion coef
cient at largeK is thus determined by a small part of th
trajectories which are not trapped, i.e., which perform le
than one rotation during the decorrelation time. A scaling
K which is close to the percolation estimate@8# was obtained
in Ref. @9#.

The conclusion is that the diffusion coefficient of the pa
ticles moving in a stochastic potentialf(x,t) results from a
competition between trapping and decorrelation: the trapp
process is determined by the space structure off(x,t), while
the decorrelation~or trajectory release! is produced by the
time variation off(x,t).

IV. PARTICLE COLLISIONS

The picture presented in Sec. III can be strongly modifi
by particle collisions. We come back now to the gene
model presented in Sec. II. The stochastic velocityh(t) de-
termines a collisional~Brownian! displacement

j~ t !5E
0

t

dth~t!. ~21!

This equation defines a Gaussian nonstationary Markov
chastic variable known as the Wiener process@12#. This
Brownian motion has zero average, and the correlation

j i~ t !j j~ t8!52d i j x min@ t,t8#. ~22!

Since the collisions and the stochastic potential are stat
cally independent variables, one can perform the chang
variable

x8~ t !5x~ t !2j~ t !, ~23!

which transforms Eq.~1! into

FIG. 1. The functionF(u) defined in Eq.~16! which describes
the effect of trajectory trapping.
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dx8~ t !

dt
52

“f„x81j~ t !,t…3ez

B0
, ~24!

and introduces the collisional displacements in the spa
argument of the potential which becomes a doubly stocha
variable~stochastic function of a stochastic variable!.

We show that the doubly stochastic fieldf„x1j(t),t…
preserves the statistical properties of the potentialf(x,t),
namely, it is stationary, homogeneous, isotropic, and ha
Gaussian one-point probability density likef(x,t). The col-
lisions determine a modification of the Eulerian correlati
and of the two-point probability density off„x1j(t),t….

The probability to find the valuef1 of the doubly sto-
chastic potential in the point (x,t) is defined by the following
average over the two stochastic variables:

P1~f1 ;x,t ![^d@f12f„x1j~ t !,t…&#.

It can be calculated using the Fourier representation of thd
function,

P1~f1 ;x,t !5E dqe2 iqf1E E d2jP1
c~j,t !

3^exp@ iqf~x1j,t !#&, ~25!

where the average over the collisional noise was written
plicitly using the probability density for the collisional dis
placements:

P1
c~j,t !5

1

4pxt
expS 2

j2

4xt D . ~26!

The superscriptc shows that the stochastic parameter in t
probability density is the collisional velocityh(t). Since
f(x,t) is Gaussian in each pointx, the remaining average in
Eq. ~25! is exp(2q2b2/2) and, after performing the integral
one obtains the Gaussian probability distribution for the v
ues of the potential:

P1~f1 ;x,t !5
1

A2pb
expS 2

f1
2

2b2D . ~27!

Similar straightforward calculations show that the two-po
probability density for the doubly stochastic potentialf„x
1j(t),t… is a convolution of Gaussian probabilities:

P2~f1 ,x1 ,t1 ;f2 ,x11x,t11t !

5E d2jP1
c~j,t !P2

f~f1 ,0,0;f2 ,x1j,t !, ~28!

whereP2
f is the two-point probability density for the poten

tial f(x,t) ~in the absence of collisions!.
The EC of the doubly stochastic potentialf„x1j(t),t…,

defined by

Ecoll[^f„x11j~ t1!,t1…f„x21j~ t2!,t2…&, ~29!

can be written, using Eq.~3!, as
al
tic

a

x-

s

l-

t

Ecoll5b2 expS 2
ut12t2u

tc
D

3E d2j1d2j2E„x11j~ t1!2x2

2j~ t2!…P2
c~j1 ,t1 ;j2 ,t2!, ~30!

where P2
c(j1 ,t1 ;j2 ,t2) is the two-point probability density

for having the collisional displacementj1 at t1 andj2 at t2.
For t2.t1 ,P2

c(j1 ,t1 ;j2 ,t2)5P1
c(j1 ,t1)P1

c(j22j1 ,t22t1).
Straightforward calculations lead to the following express
for the EC of the potential in the presence of collisions:

Ecoll~x,t !5b2E coll~x,t !expS 2
utu
tc

D , ~31!

where

E coll~x,t ![E E d2j E~x1j!P1
c~j,t !. ~32!

In Eqs. ~31! and ~32!, x5x22x1 and t5t22t1; this shows
that the collision-averaged EC of the potentialEcoll(x,t) is
stationary and homogeneous, likeE(x,t).

Thus the average effect of the collisional noiseh(t) con-
sists of the modification of the EC of the potential. Mo
specifically, the space dependence of the correlationE(x) is
transformed intoE coll(x,t) @Eq. ~32!#, gaining an additional
time dependence which is adiffusive evolution. Indeed,
E coll(x,t) is the solution of the diffusion equation.

]

]t
E coll~x,t !5x¹2E coll~x,t !, ~33!

with the initial conditionE coll(x,t50)5E(x). Consequently,
the average effect of collisions consists of progressiv
smoothing out the EC of the potential and of eliminati
asymptotically the space dependence of the correlation.

Particle collisions do not affect the isotropy property
the potential: ifE(x,t) is isotropic thenEcoll(x,t) is a func-
tion of r[uxu as well. In these conditions a change of va
able j85x1j can be performed in Eq.~32! and the polar
coordinatesj85(r,a) ~wherea is the angle formed by the
vectorsx andj8) can be introduced. The integral overa can
be performed analytically, yielding

E coll~r ,t !5
1

j2~ t !
E

0

`

dr rE~r!I 0S rr

j2~ t !
D expS 2

r 21r2

2j2~ t !
D ,

~34!

where I 0 is the Bessel function of imaginary argumen
Equation ~34! indeed shows thatE coll depends only onr
whenE(x,t) is isotropic.

We note that in the correlationEcoll(x,t) there is an im-
portant difference between the time dependence determ
by the time variation of the potential@the exponential factor
in Eq. ~31!# and the time dependence induced by the co
sions. The space integral ofEcoll(x,t) is

E E d2x Ecoll~x,t !5b2 expS 2
t

tc
D E E d2x E~x!,
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where the effect of collisions has disappeared. This sh
that the time variation of the potential destroys the corre
tions, while particle collisions only ‘‘spread’’ them. We wi
show that this difference produces important effects in
diffusion coefficient.

The EC of the velocity components averaged over
collisional displacements,Ei j

coll(x,t), can be calculated as th
EC of the potential; the result is similar to Eqs.~31! and~32!.
Thus all these correlations have a diffusive evolution lead
to spatially uniform functions. Consequently, one can sh
that Ei j

coll(x,t) can be derived from the EC of the potenti
Ecoll(x,t) by the same equations~5! as in the collisionless
case:

Exx
coll52

]2

]y2
Ecoll, Eyy

coll52
]2

]x2
Ecoll, . . . . ~35!

In order to determine the LVC and the diffusion coef
cient by means of the decorrelation trajectory method,
have to specify the spatial dependence of the EC of the
tential. We consider the same model as in Ref.@9#:

E~r !5
1

11
r 2

2l2

. ~36!

In the following calculation dimensionless variables will b
used, taking as unitsl for distances,tcoll5l2/x for time, b
for the potential, andV5b/l for velocities ~without intro-
ducing different notations!. The collision averaged EC of th
potential corresponding to Eq.~36! can be written in a sim-
pler form than the general expression~34!:

E coll~r ,t !5
1

2t
E

0

`

dj

j expS 2
j2

4t
D

AS 11
~r 2j!2

2
D S 11

~r 1j!2

2
D

.

~37!

The decorrelation trajectory method starts from dividi
the space of realizations of the stochastic potentialf(x,t) in
subensembles determined by condition~11!. We determine
the average of the doubly stochastic velocity in each sub
semble. As shown in the Appendix, the result is similar
Eq. ~13! obtained in the collisionless case:

Vj
coll~x,t;f0,v0![^v j„x1j~ t !,t…&uf0,v0

5v i
0

Ei j
coll~x,t !

V2
1f0

Ef j
coll~x,t !

Vb
. ~38!

Defining thex axis in the direction of the initial velocity, we
havev05(u,0). The equations for the decorrelation traje
tory ~14! in subensemble~11! are obtained, using Eqs.~38!
and ~35!, as

dX

dt
52Pu

]H~X,Y,t !

]Y
expS 2

Pt

k D , ~39!
s
-

e

e

g

e
o-

n-

-

dY

dt
5Pu

]H~X,Y,t !

]X
expS 2

Pt

k D ,

with the HamiltonianH defined by

H~X,Y,t !5S ]

]Y
1pD E coll~R,t !, ~40!

where p5f0/u and R5AX21Y2. These equations have
Hamiltonian structure as in the collisionless case. The co
sions introduce the time dependence inH in the following
way. The functionH @Eq. ~40!# is a solution of the~irrevers-
ible! diffusion equation~33!. This function formally acts as a
Hamiltonian in Eqs.~39!. There is, however, no parado
here, becauseH(X,Y,t) is only defined fort.0 @the solu-
tions of Eq.~33! form a semigroup#; hence time cannot be
inversed. The seemingly ‘‘reversible’’ equations~39! thus
actually describe an irreversible evolution. The decorrelat
paths obtained from Eqs.~39! and~40! are much more com-
plicated than in the collisionless case. They are no lon
closed curves. The decorrelation trajectories are function
four independent variables,X(t)[X(t;K,Pu,p), while in
the collisionless case there were only two variables (Kut and
p).

The LVC is determined according to Eq.~15! as the La-
grangian correlation observed along the decorrelation tra
tories. The running diffusion coefficient obtained by integr
ing the LVC is

D~ t;K,P!5b
1

A2p
E

0

`

dp du u3

3expS 2
u2

2
~p211! DX~ t;Pu,p,K !. ~41!

This expression is similar to Eqs.~18! and ~16!, but due to
the presence of several independent parameters it is not
sible as in the collisionless case to computeD(t) in the fro-
zen turbulence limit (K→`), thus obtaining the functionF
which actually determines the diffusion coefficient for anyK
@see Eq.~20!#. Here, the time dependent diffusion coefficie
~41! must be calculated up to its asymptotic value for ea
value ofK andP independently. The calculation procedure
much more complicated and the computation effort mu
larger. The only possible simplification is to determine a
to store on a large size meshr i , t j the collision average EC
of the potentialE coll(r ,t) and its first and second derivative
and to use space and time interpolation in the numer
integration of the decorrelation trajectories. The space
rivatives ofE coll which enter in the decorrelation equation
~39! are calculated using the analytical derivatives of E
~37! and numerically performing the resulting space in
grals. The order of the calculation of the two integrals in E
~41! is important: the integral overu has to be performed
first.

The effective diffusion coefficient of collisional particle
moving in a stochastic potential is obtained from Eq.~41! as

De f f5D~K,P!1x, ~42!
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where the ‘‘interaction’’ termD(K,P) is given by the
asymptotic value of Eq.~41! and involves the combined ac
tion of the stochastic field and collisions.x is the always
present direct contribution of collisions.

V. RESULTS

The decorrelation paths obtained from Eq.~39! are much
more complicated than in the collisionless case~a few ex-
amples are presented in Fig. 2!. They show that the trapping
effect is still effective at large Kubo and Pe´clet numbers: the
trajectories corresponding to large values ofp[uf0/uu are
almost closed~up to a small drift in the direction perpendicu
lar to v0, here along they axis!. These trapped trajectories d
not contribute to the diffusion coefficient. The latter is det
mined by the trajectories which are not trapped~i.e., which
perform less than one rotation before they stop!. They corre-
spond to small values ofp. In the collisionless case thi
effective range ofp aroundp50 depends onK ~it goes to
zero asK→`). The collisions produce the increase of th
effective range ofp. Thus the collisions have a releasin
effect enlarging the number of ‘‘untrapped’’ trajectories.

A nontrivial time dependence of the running diffusion c
efficient is obtained from Eq.~41!. As seen in Fig. 3 there
appear several transient regimes at largeK and P. First, at
t!t tr , there is a linear dependenceD(t);t, since the time
elapsed is smaller than the transit timet tr and the particles
have not yet ‘‘seen’’ the structure of the stochastic potent
Then, att tr!t!tcoll , the trapping process is effective an
the diffusion coefficient is decreased. As can be observe
Fig. 3 compared to Fig. 1, this first part of the evolution
D(t) is actually determined by the functionF(u) obtained in
the collisionless case. Thus the collisions do not influe
the evolution of the diffusion coefficient at times muc
smaller that the collisional characteristic timetcoll . At t
*tcoll , a tendency of saturation of the diffusion coefficie
appears.

This is similar to what happens in the collisionless pro
lem: at t*tc the time variation of the stochastic potenti
produces the decorrelation of the trajectories and as a re
the LVC goes to zero and the diffusion coefficient satura

FIG. 2. Examples of decorrelation paths obtained from Eq.~39!
for various values ofp[f0/u; P550, K5200, andu51.
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If the evolution ofD(t) would end here a result similar t
Eq. ~20! would be obtained:D5bF(P). But, att@tcoll , an
increase of the diffusion coefficient is observed. After that
t*tc , the time variation of the potential eventually dete
mines the saturation ofD(t).

The LVC is represented in Fig. 4. Since this function h
a long tail, we represent log(uLu). One can observe first th
decay of the LVC in a time of the ordert tr , then, between
the two singularities which appear in this logarithmic rep
sentation, there is the negative LVC which is determined
particle trapping. Att;tcoll , the LVC goes to zero, and, a
t@tcoll , a positive LVC appears due to collisions. Th
shows that the collisions do not produce the decorrelation
the trajectories but instead they ‘‘create’’ Lagrangian cor
lations at large times. Compared to the collisionless LV
corresponding to the same value ofK and toP→` ~dashed

FIG. 3. The running diffusion coefficient~41! for P5100 and
K5500 ~continuous line! compared to the result presented in Re
@10# ~dotted line!.

FIG. 4. The absolute value of the LVC forP5100 ~continuous
line! and for the collisionless case~dotted line!; K5500. Between
the singularities corresponding to the zeros ofL(t;K,P) lies the
negative LVC determined by trapping. The effect of the collisio
appears at large times (t.tcoll), where they induce a positive LVC
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line in Fig. 4!, the effect of particle collisions appears ve
clearly: they produce a bump on the negative tail of the LV
at tcoll!t!tc .

This picture is in agreement with the results obtained
means of the renormalization group technique which is a
to determine the asymptotic scaling int of the MSD of col-
lisional particles moving in astatic stochastic potential~see
Refs. @10,13–15#!. The heuristic argument for explainin
these induced correlations is that the collisional displacem
~the Brownian motion! determines long range temporal co
relations in the sequence of the values of the potential
countered because in two dimensions the Brownian tra
tory returns in the already visited places with probabil
one. As a result, the time spent duringt in each visited place
is of the order ln(t). A shown in Refs.@10# and @13#, in a
two-dimensional space, the ‘‘interaction’’ of the diffusiv
collisional motion with the subdiffusive process induced
the static stochastic potential determines a supradiffu
asymptotic behavior of the MSD proportional totAln(t). For
the time dependentstochastic potential, we obtain this tim
dependence of the MSD as a transient regime. This ca
seen in Fig. 3 where the running diffusion coefficientD(t)
;Aln(t), corresponding to the above MSD, is represented
the dotted line and compared to our resultD(t;K,P). We
note that, with the decorrelation trajectory method, we obt
this supradiffusive behavior as a transient regime in a st
potential as well. This problem will be discussed in a for
coming paper, where ‘‘random random walks’’ are studied
two and three dimensions in the case of short and long ra
EC of the potential.

VI. DIFFUSION REGIMES

Collisional particle diffusion in a time dependent stocha
tic potential depends on three characteristic times: the tra
time t tr5l/V, the correlation time of the stochastic pote
tial, tc , and the collisional timetcoll5l2/x. They are com-
bined in two dimensionless parameters: the Kubo num
K5tc /t tr and the Pe´clet numberP5tcoll /t tr . Depending
on the values of these parameters, several diffusion regi
are obtained. They can be understood by analyzing the e
tions for the decorrelation trajectories~39!.

Simple arguments show that collisions can have an imp
tant role in the interaction term of the effective diffusio
coefficient~42! whenP!K. In the opposite case,P@K ~or
tcoll@tc), during the correlation time of the stochastic p
tential the collisional Brownian motion is negligible com
pared tol and there is no interaction between the effects
the two stochastic processes. This can easily be seen in
equation for the decorrelation trajectories~39! where the ex-
ponential factor corresponding to the time variation of t
potential produces in these conditions the decay of the d
rrelation velocity before the ECE coll(x,t) changes signifi-
cantly in time. Thus, Eqs.~39! are practically identical with
those obtained in the collisionless case and the effective
fusion coefficient~42! is the sum of the diffusion coefficient
determined separately by each stochastic process,

De f f5D~K !1x5bS F~K !1
1

PD , P@K, ~43!
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whereD(K) is the collisionless diffusion coefficient deduce
in Ref. @9# and given in Eq.~20!.

In the quasilinear regime defined byP!1 ~and P!K in
order to have a collision effect!, the interaction term of the
effective diffusion coefficientD(K,P) can easily be esti-
mated from Eqs.~39!. The displacement produced during th
collision time tcoll is much smaller thanl, and the
asymptotic value ofX(t) is approximatelycPu where the
constantc is the time integral of]H(X,Y,t)/]Y calculated in
X50 andY50 which for the EC@Eq. ~36!# yields c>0.5.
Upon substitution in Eqs.~41! and ~42!, one obtains

De f f5bS cP1
1

PD , P!1, P!K. ~44!

This is a highly collisional regime (x@b) in which the sto-
chastic potential has a small contribution: the direct con
bution of collisionsx @the second term in Eq.~44!# is actu-
ally dominant. However, we note that in this strong
collisional case the scaling of the diffusion coefficient wi
respect to the Kubo number is of Bohm type even atK@1,
which means that the trapping process does not appear in
case~due to collisions which strongly scatter the traject
ries!.

The most interesting results appear in the nonlinear
gime defined byP@1, i.e., when the collisional diffusion is
weak (x!b). In these conditions, the first term in Eq.~42! is
dominant, the direct contribution of the collisions being ne
ligible. WhenP.1 andK*P, the diffusion coefficient de-
pends on both parameters.

The results are presented in Fig. 5, where the ‘‘inter
tion’’ term D(K,P)/b is represented as a function ofK for
various values ofP. First we note that the above estimat
for the quasilinear regime are confirmed: the curves forP
50.1 andP51 show the transition between regime~43! at
K!P to regime~44! at K@P. The transition is slow, lying
on several orders of magnitude ofK. This term is actually at
P!1 just a correction to the much larger collisional diffu
sivity x.

FIG. 5. The asymptotic diffusion coefficientD(K,P) obtained
from Eq. ~41! as a function ofK for several values ofP.
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In the nonlinear regimeP@1, we can see that an impo
tant amplification of the effective diffusion can be produc
by a small collisional diffusionx. The collisionless resul
~the dashed curve in Fig. 5! is also represented for compar
son. As seen in Fig. 5, the scaling of the diffusion coefficie
D(K,P) in the Kubo number is not influenced by collision
at K!P ~where the quasilinear and the percolation regi
can be observed! but after that, atK*P, theK dependence is
strongly changed. At the ‘‘resonance’’ conditionK>P ~i.e.,
tc>tcoll) a wide minimum of the diffusion coefficient ap
pears. Then, asK increases, the percolation scaling is tran
formed into a super-Bohm regime with aK dependence
stronger than linear:

D~K,P!;K1.17, K@P@1. ~45!

The dependence of the effective diffusion coefficient@Eq.
~42!# De f f /b on the Pe´clet numberP in presented in Fig. 6
for several values ofK. One can observe that atP!1 the
effective diffusion coefficient is independent ofK and can be
approximated by the collisional diffusionx. The effect of the
stochastic potential becomes important at largeP where the
effective diffusion coefficient is much larger thatx. The con-
tribution of the stochastic potential is independent of co
sions~i.e., of P) at smallK but at largeK it is a complicated
interaction between the dynamical trapping of the partic
and the collisional Brownian motion.

VII. CONCLUSIONS

We have shown here that particle collisions can prod
important modifications of the effective transport coefficie
in a given two-dimensional electrostatic turbulence. We h
determined the diffusion coefficient induced by the co
bined process of collisions and time dependent stocha
potential. A large amplification of the diffusion coefficien
appears in low frequency plasma turbulence (K@1) due to a
small collisional diffusionx!b (P@1). As an example, a
collisional diffusionx which is only 1% of the amplitude o
the stochastic potential (x51022b,P5100) approximately
doubles the diffusion atK5P ~where the effect is mini-

FIG. 6. The total asymptotic diffusion coefficientDe f f(K,P)
@Eq. ~42!#, as a function ofP for several values ofK.
t
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mum!, and multiplies it by a factor of order 10 atK.1000.
The scaling of the diffusion coefficient in the Kubo numb
is changed by collisions in this range of parameters: the
fusion coefficient has a minimum atK>P and then, atK
@P, a super-Bohm regime was found. The physical rea
for this ‘‘anomalous’’ effect is particle trapping in the struc
ture of the stochastic potential, combined with the collision
Brownian motion which in two dimensions generates lo
time correlations by returning in the places already visite
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APPENDIX

The average of the doubly stochastic velocity in the s
ensemble~11! @defined by Eq.~38!# can be written explicitly
as

Vcoll~x,t;f0,v0!

5
^vd@v2v„x1j~ t !,t…#d„v02v~0,0!…d„f02f~0,0!…&

^d„v02v~0,0!…d„f02f~0,0!…&

Using the Fourier representation of thed functions and the
explicit definition of the collision average, one obtains

Vx
coll5

1

P1~v0,f0!

1

~2p!5E E dk1 dk2 dqE dv vx

3exp~2 ik1•v2 ik2•v02 iqf0!E d2j P1
c~j,t !A,

where

A[^exp@ ik1•v~x1j,t !1 ik2•v~0,0!1 iqf~0,0!#&

The integral overdv is (2p)2id(k1y)(d/dk1x)d(k1x), and
the integral overdk1 can be calculated:

Vx
coll5

2~2p!23i

P1~v0,f0!
E dk2 dq

3exp~2 ik2•v02 iqf0!E d2j P1
c~j,t !

]

]k1x
Auk150 .

After calculating the averageA over the realizations of the
~Gaussian! stochastic potential and the derivative, one o
tains

]

]k1x
Auk1505S k2 jEjx~x1j,t !

V2
1

qEfx~x1j,t !

Vb D
3expS 2

k2
21q2

2 D .
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The subensemble average velocity can be written as

Vx
coll5

1

P1~v0,f0!
E d2j P1

c~j,t !

3S Ejx~x1j,t !

V2

]

]v j
0

1
Efx~x1j,t !

Vb

]

]f0DP1~v0,f0!,
hy

.H

m

J

which leads to Eq.~38!. Thus, the subensemble average
the doubly stochastic velocity is similar with that obtained
the collisionless case@Eq. ~13!# although the correspondin
two-point probability density is not of Gaussian type. T
latter is given by a convolution similar to Eq.~28!:

P2~v0,f0,0,0;v,x1 ,t1!

5E d2j P1
c~j,t ! P2

f~v0,f0,0,0;v,x1j,t !.
ys.
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